CERTAIN BIOLOGICAL FEATURES OF SPRAT *SPRATTUS SPRATTUS BALTIicus* (G. SCHNEIDER) FROM BORNHOLM DEPTH

NIEKTÓRE CECHY BIOLOGICZNE SZPROTA *SPRATTUS SPRATTUS BALTIicus* (G. SCHNEIDER) REJONU GŁĘBI BORNHOLMSKIEJ

Institute for Exploitation of Sea Resources

The investigations of Baltic sprat have been carried out for many years, while the sprat of Bornholm Depth had never been subjected to any definite biologic analysis. Subjected to these investigations was the sprat obtained from industrial catches during 1969 and 1970. The length of body, rate of growth, age, participation of sexes, maturity of gonads and the period of spawning were investigated and determined. The stomachs of sprats were analysed for composition during the whole year.

INTRODUCTION

First work on Baltic spratt from Swedish coast was given by Hessle (1927). Polish literature relating to spratt is substantially rich. The problems of spratt length, age, weight, sex and rate of growth in relation to changes appearing in stocks of spratt had been dealt with during the inter wars period. Dixon (1937) worked on changes of fat content in spratt in annual cycle, while Demel (1938a, 1939b) investigated the influence of hydrologic conditions on spratt distribution.

In years 1947-1948 some published works were based on the materials collected before the war: on food (Mańkowski, 1947b); on distribution of spratt egg and larvae in Gdańsk Bay (Mańkowski, 1947a, 1948); on spratt biology (Dixon, 1950, Mulićki, 1948a, 1948b). Elwertowski (1957a, b, and c, 1960a, b) very explicitly reported after the war on problems connected with spratt. Wrzesiński (1969) gives biological evaluations of spratt stocks in Gdańsk and Gotland Basins.

Polish catches of baltic spratt after the war exceeded 5% of totals. Quick rate of output was noted after 1950. During the last five years the catches of spratt increased from 13 579 tons to 31 855.1 tons, the quantity not noted
so far. (Data obtained from Central Board of Fishery). The output of spratt catches indicates annual differences and after period of high output, the catches are decreasing (L a b a t z k i, 1971).

Presented in this work are the results of biological investigations of sprat from Bornholm Basin.

MATERIAL AND METHOD

The spratt from pelagic trawl fishing in eastern part of Bornholm Basin from February 1969-January 1970 served as material for this investigation (Fig. 1).

Fig. 1. Spratt fishing grounds

The samples were generally collected once in a month, except in March 1969; in April and May of this year the samples were taken twice during each month and in August - four times. About 150 fishes were collected at random from net and immediately preserved in 4% formaline solution. Totally 1722 spe-
Biological features of spratt... 43

cimens of spratt were collected and subjected to investigations. The following measurements and determinations were made on material collected: length of body (Lc in cm), age according to readings from otoliths, sex, maturity of gonads in Mayer's scale, composition of species, quantity of organisms in stomach content, percentage of species in food and coefficient of gonads maturity.

RESULTS

Length of body and rate of growth. The spratt of body length 8.5-15.5 cm (Lc) was used for investigations percentage of length class is changeable for particular months. Basic mass of catches in annual cycle (78-99%) is formed by the specimens of body length 12-14 cm. Smaller or larger fish appeared not numerously. From December, appeared sporadically (single specimen) the small spratt of body length 9-10 cm. Its percentage was increasing in subsequent months to reach maximum in April (about 15%), but was not present during the remaining months of spring, summer and autumn. Fish of length 15 and 15.5 cm was present in catches during summer months only and in autumn, as single specimens (Fig. 2).

The average body length of spratt was calculated for each month of a year (Tab. 1).

Table 1

Average body length of spratt in annual cycle (Lc in cm)

<table>
<thead>
<tr>
<th></th>
<th>II</th>
<th>III</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969</td>
<td>11.7</td>
<td>11.9</td>
<td>12.7</td>
<td>13.6</td>
<td>12.8</td>
<td>13.4</td>
<td>12.5</td>
<td>12.8</td>
<td>12.9</td>
<td>12.8</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td></td>
</tr>
</tbody>
</table>

The average body length of spratt from industrial fishing amounted to 12.7.
The collected material was composed by specimen of age up to 5 years (Fig. 3).

From trawl-fishing, the spratt of first year of life was of length 8-11 cm. In second year of life the spratt attains 10-12 cm. For third, fourth and fifth year, the length of body amounts to 11-14.5 cm, 12-15 cm and 13-13.5 cm respectively. Calculated average length of spratt body in particular age-groups (Tab. 2) indicated that, highest increase in length of body takes place at young spratt during first year of life (in average 9.5 cm). In third and second year of life, the increase of spratt growth is about 1.5 cm while in fifth - 0.5 cm only. Average length of body (Lc in cm) for particular age-groups was determined (Tab. 2).

Table 2

Average length of spratt body in particular age-groups

<table>
<thead>
<tr>
<th>Age</th>
<th>0+</th>
<th>1+</th>
<th>2+</th>
<th>3+</th>
<th>4+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average length</td>
<td>9.5</td>
<td>11.0</td>
<td>12.7</td>
<td>13.6</td>
<td>14.1</td>
</tr>
</tbody>
</table>
In catches, the specimen of three and four years of life dominated (58.7% and 27% respectively).

Fig. 2. Length composition of spratt in annual cycle
Maturity of gonads and spawning period

The fish with gonads in VI maturity stage, according to Mayer's scale, were noted in the investigated region from April to July 1969. Large quantities of spawning specimens were noted in May (33.7%) and maximum of spawning prevailed for July - 35% (Fig. 4). The coefficient of gonads maturity calculated in an annual cycle proved the increase beginning from October, to obtain maximum value during spawning period. After spawning, the coefficient decreases. Beginning of gonads maturity was ascertained already at fish of age 1+.

During first three years of life, the females dominate the males (Fig. 5). The domination increases during fourth and fifth year of life and this proves that males live shorter than females.
Food of spratt was separated into two groups: constant components appearing during whole or nearly whole annual cycle demonstrating some quantitative fluctuations; seasonal components which most frequently demonstrate only one quantitative peak in food after which they disappear. To such constant compounds belong: Temora longicornis, Centropages hematus, Podon sp., and young forms of Copepoda (Fig. 6). Most dominating in seasonal compounds are: Pseudocalanus elongatus (May) and Bosmina coregoni maritima P.E. Müll. Besides these two animal groups present also in food were: Eudane nordmani, Acartia longiremis, Eudane spinifera, Eurytemora hirundoides, Limnocalanus grimaldi and nauplial forms of Copepoda.
Some interrelations between spratt length and food composition (also with age) were determined. In food of specimen of body length 10.6-11.5 cm, Limnocalanus grimaldi and Evadne spinifera were noted. Remaining species were present in food of all size-classes. In relation to some species, large quantitative differences were appearing in particular classes (Fig. 7). With growth of body length the increase of percentage of such species as: Bosmina coregoni maritima, Podon sp., Evadne spinifera, Evadne nordmanii was observed. Contrary, i.e. decrease of species participation in food with fish growth was noted for: Acartia longiremis, Eurytemora hirundoides and partly Centropages hamatus. No deciding pattern in this respect was noted in relation to Temora longicornis and Pseudocalanus elongatus.
Fig. 7. Food composition of spratt in relation to length-class

DISCUSSION

From industrial point of view an attainment of length of spratt body is of importance. Distribution of specimen in length classes originating from Bornholm catches indicated that for a period of year, basic groups are formed by the specimens of 12 and 14 cm in length, i.e. the fish relatively large. For particular months, clear pattern in increase and decrease of average body length appears during the year, viz: the length of body increases between February and June and decreases between July and January. This is due to fact that the specimen in first year of life are accounted to industrial group of fish. This proves to a very high rate of spratt growth during first year of life. After 8-9 months some specimen attain the size of 9-10 cm. This was reported already by Schnieder (1918) that, up to about 3 cm of length, the spratt grows at rate of 4.7 mm weekly.

Average length of specimen in first year of life in material obtained from industrial catches, is however exceeded. Therefore the averages for this age groups given in Table 2 and the distribution of specimens in length classes of Figure 3, relate only to that part of first year fish which was present in catches due to determined mesh size of net.

The basic group of fish in catches is formed by the specimen in third year of life - average 58.74%. Older fish presents lower participation due to its actual minority, while younger fish due to smaller sizes of body. Hypothetic natural
Biological features of spratt...

age distribution of population, with consideration to large mortality rate of spratt (Elwertowski (1960a)) is correct, i.e. the quantity of specimen decreases with growth of age group. Considering, however, the assumptions of Labatki (1971), such distribution may be derranged during some years.

Of basic importance for growth of spratt population as species of short life cycle, is the age at which it starts to reproduce. As may be assumed on bases of Labatki's (1971) hypothesis, the fact that fish starts spawning in first year of life is of deciding importance for output of catches. The investigations of various authors (Ehrenbaum, 1902, 1906; Hessle, 1927; Mielck, 1935; Mankowski, 1958) proved that spawning of spratt is considerably prolonged in time and its beginning depends mainly on temperature of water. Deciding majority of Kiel spratt attains sexual maturity and spawns in first year of life (Moraw, 1954). It was noted that Bornholm spratt possessed the gonads in VI stage of maturity between first and second year of life in very small quantity only (0.92%). According to Elwertowski (1957b), the spratt of Southern Baltic may start spawning at size 8-10 cm and therefore actual percentage of spawning young specimen is higher.

In 1969, the spawning was noted on 12 April (it is possible that it started already in March but no materials from that period are available) and lasted till July. On 6 August no specimens with matured roe were noted. The intensity of spawning was different during this period (Fig.4). As the spawning is spread so much in time, only negligent part of fish originating from that roe is capable for spawning during the nextyear. Thus, in 1969 the fish will originate from April spawning and probably from spawning at beginning of May. The remaining ones shall not attain suitable size of body and maturity of gonads before November when they cease to feed. In Baltic, the spawning grounds of spratt extend between Kiel Bay, Alands Islands and entrance to Finnish Bay. Larger concentrations of roe are observed in Gotland Basin, Gdansk Bay, Slupsk Depth, Bornholm Basin and Kiel Bay (Elwertowski, 1957a, c). As it was proved by Mankowski (1955), under one square meter of Bornholm Depth during 1951 present were 1,7 roe granules against 50 in Gdansk Depth and 70 in Slupsk Depth. The same author (Mankowski, 1948) year 1938 noted considerably larger quantity of roe in Bornholm Depth amounting to 300 eggs under one square meter of sea surface. These quantities are however lower than those ascertained during the same period in Gotland Depth and in Latvia coast. According to investigations from 1949 (Mankowski, 1951), the roe was appearing in largest quantities in Bornholm Basin. Quantity of roe in Southern and Middle Baltic demonstrated considerable changes for each year.

According to investigations of Svetovidov (1952), Wrzecinska (1969), and to our investigations, the quantity of females always exceeds the quantity of males. According to Svetovidov (1952) the females present 55.5-73.5%. In Gdansk and Gotland Basin the percent of females amounts to 55, and for open sea-65% (Wrzecinska 1969). The present investigations proved considerable differences in quantity of females and males in respect to year and age. During all months of 1969, except October, the quantity of females exceeded the quantity of males; in October, the males presented 51.06%. It is apparent however that females dominated as a rule and the exception noted in October results from casual structure of material
so Nguyen van Khanh, I. Drzycimski, J. Chojnacki

collected. Average annual participation of females in catches amounts to 62.09% and of males 37.91%. In age distribution, evident decrease of males quantity appears for fourth (3+) and fifth (4+) year of life.

Majority of authors discerned in food of spratt the constant and seasonal compounds. According to Mańkowski’s (1947b) investigations on spratt of Gdańsk Bay and Gotland Depth, the composition of food by species proved to be poor. The samples for investigations were collected from coastal regions and contained such compounds which were not appearing in food of Bornholm spratt, viz. Chydroridae, naupli form of Cirripedia, Mysidacea and larvae of molluscs. The examined spratt proved absolute lack of food in alimentary ducts and this means "no feeding" between November and February. Also Elwetowski (1957b) and Wrzesiński (1969) pointed to "no feeding" of spratt during winter. Mańkowski (1947b) located the food in spratt’s stomach during winter. These were small specimens (up to 8 cm in length) which were not present in samples for the present investigations. It is worth noting that cessation of feeding of Bornholm spratt in 1970 was noted very early i.e. 15 November at water temperature about 8°C.

REFERENCES

Demel, K., 1938a: Próba wyjaśnienia czynnikami klimatycznymi katastrofalnego braku szprota w Zatoce Gdańskiej w sezonie zimowym 1937/1938. [An attempt to explain the spratt absence in Gdańsk Bay in Winter 1937/1938 as due to climatic conditions]. - Biuletyn Stacji Morskiej, 3.

Mańkowski, W., 1947b: Odżywianie się i pokarm szprota (Clupea sprattus) Bałtyku Środkowego. [Food and feeding of mid-Baltic spratt]. Arch. Hydrob. i Ryb. 13.

Mańkowski, W., 1948: Porównawcze studia nad ilościowym rozmięsczeniem jaj i larw szprota, dorsza i moteli w Zatoce Gdańskiej w latach 1938, 1946 i 1947. [Comparative studies on quantitative distribution of eggs and larvae of spratt, cod and cimbrius in Gdańsk Bay]. - Biul. Morski Lab. 4.

Mańkowski, W., 1950: Wpływ warunków termicznych na tarło ryb. [Influence of thermal conditions on spawning]. - Biul. MIR, Gdynia. 5.

Mańkowski, W., 1955: Badania planktonowe na południowym Bałtyku w r. 1951. [Investigations of plankton in Southern Baltic]. - Prace MIR, Gdynia. 5.

Mańkowski, W., 1958: Characteristics of the Spratt Spawning in the Recent Years. ICES, Sardine Committee. 47.

Multički, Z., 1948a: The Distribution of the Spratt in the Middle Baltic during the Summer 1939. - Journ. du Cons. 15, 2.

Schneider, G., 1918: Die Fischerei an Estlands Küste. - Mitt. der Seef. Ver. 34.

NIEKTÖRE CECHY BIOLOGICZNE SZPROTA
SPRATTUS SPRATTUS BALTICUS (G. SCHNEIDER) REJONU GŁĘBII BORNHOLMSKIEJ

S t r e s z c z e n i e

Badania szprota Sprattus sprattus balticus (G. Schneider) z rejonu Głębi Bornholmskiej prowadzono w latach 1969 i 1970. Przyrosty długości ciała szprota, zwłaszcza w pierwszych latach jego życia są dobre, w trzecim i czwartym wynoszą już ok. 1,5 cm na rok, a w piątym roku życia tylko 0,5 cm. W połowach dominowały szproty trzyletnie oraz czteroletnie (odpowiednio 90 i 27%). W stadzie przemysłowym dominują samice, a w przekroju wiekowym obserwuje się wyraźny spadek liczby samców zwłaszcza w czwartym i piątym roku życia. Tarlo szprota bornholmskiego trwa od kwietnia do lipca z maksymalnym nasileniem w lipcu; początek dojrzewania gonad stwierdzono już u ryb w wieku 1+.

Różnorodność gatunkowa pokarmu badanego szprota jest mniejsza niż u szprota Bałtyku Środkowego, a w okresie żerowania od kwietnia do października ustalone stałe składniki pokarmu, do których należą: Temora longicornis, Centropages hamatus i Podon sp. Okresowo podstawowym pokarmem szprota są: Bosmina coregoni maritima, Temora longicornis i Pseudocalanus elongatus. Stwierdzono pewną wybiórczość pokarmową ryb dużych, które wydają głównie wioślarki i Temora longicornis.

HEKOTOPłE EWOJOrliJllE IIP1'!8HAKV! llillPOTA SPRATTUS SPRATTUS
BALTIGUS (G. SCHNEIDER) l113 paliOHa EOpHXOJI:hMCKOM. Bl1A:Z\W!Hbl

R6znorodnosc gatunkowa pokarmu badanego szprota jest mniejsza niż u szprota Bałtyku Środkowego, a w okresie żerowania do października ustalono stałe składniki pokarmu, do których należą: Temora longicornis, Centropages hamatus i Podon sp. Okresowo podstawowym pokarmem szprota są: Bosmina coregoni maritima, Temora longicornis i Pseudocalanus elongatus. Stwierdzono pewną wybiórczość pokarmową ryb dużych, które wydają głównie wioślarki i Temora longicornis.

Rę Ż ų m e

I s k o d a n i a w i p r o t a Sprattus sprattus balticus (G. Schneider) z rejonów Bor n h o l m s k ą w ła dni wy prowadziano w 1969 i 1970 r. R. Uży cię cie długo gi ciała szprota, szczególnie w pierwszych dwóch latach życia, jest dobrze, w trzecim i czwartym wynosi około 1,5 cm w roku, a w piątym roku życia tylko 0,5 cm. W połowach dominują samice, a w przekroju wiekowym obserwuje się wyraźny spadek liczby samców, zwłaszcza w czwartym i piątym roku życia. Tarlo szprota bornholmskiego trwa od kwietnia do lipca z maksymalnym nasileniem w lipcu; początek dojrzewania gonad stwierdzono już u ryb w wieku 1+.
Биологические особенности шпрота являются меньшими, чем у шпрота из средней Балтики, а в период с апреля до октября установлены постоянные компоненты корма, к которым относятся: Temora longicornis, Centropages hamatus и Podon sp. В отдельные периоды основным кормом шпрота являются: Bosmina coregoni maritima, Temora longicornis и Pseudocalanus elongatus. Установлена определенная кормовая прихотливость крупной рыбы, которая поедает в основном веслоногих раков и Temora longicornis.

Address:
Doc. dr hab. Idzi Drzycimski
Mgr Juliusz Chojnacki
Instytut Eksploatacji Zasobów Morza AR
Szczecin, ul. Królewicza Kazimierza 4
Polska - Poland

Received 24.VII.1972